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Abstract: - This paper executes bearing fault diagnosis with little data through few-shot learning. Recently, 

deep learning-based fault diagnosis methods have achieved promising results. In previous studies, fault 

diagnosis requires numerous training samples. However, in manufacturing, it is not possible to obtain sufficient 

training samples for all failure types under all working conditions. In this work, we propose a Few shot 

learning-based rolling bearing fault diagnosis that can effectively learn with limited data. Our model is based 

on the siamese network, which learns to use the same or different class of sample pairs. 
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1 Introduction 
Manufacturing competitiveness is important in the 

era of global competition and the fourth industrial 

revolution. Product quality and facility management 

are important for securing manufacturing 

competitiveness. It is difficult to manage production 

facilities on-site and most companies do not have 

facilities maintenance workers. In many cases, 

production is often stopped because the equipment 

is stopped until repair workers arrive. Stable 

production is impossible because of equipment 

failure. Unstable production creates several losses. 

Additionally, it can significantly affect the quality of 

the product and cause significant losses to the 

company. 

Most equipment failures occur in rotating 

equipment and bearing damage is the number one 

cause of failure in rotating equipment. As the most 

essential component of rotating mechanical 

equipment, the condition of rolling bearings 

significantly impacts the entire facility and 

manufacturing line, [1], [2], [3]. 

If the bearing is damaged while the rotating 

machine is running, the machine or the entire 

equipment may jam or malfunction. The bearing 

defects are caused y complex working conditions 

and long-term operation, resulting in microcracks 

inside the bearing and then internal microcracks 

accumulate, gradually starting with surface 

breakage. It is possible to detect the initial defect of 

a bearing by grasping the accident condition of the 

bearing from its vibration signal of the bearing, [1], 

[3]. 

Previous bearing defect studies have undertaken 

CNN, [8], [10], RNN, [11], [12], and Auto-encoder, 

[13], [14]. Other than that, there was a GAN, [16], 

[17], [20] study. In the above work, many data-

based and deep learning-based technologies have 

been applied to increase accuracy and reliability, but 

most technologies require large amounts of training 

data, such as vibration, sound, motor and current 

signals. However, obtaining sufficient data samples 

of good quality to train all failure-type 

classifications in actual manufacturing sites is 

difficult. Therefore, there is limited data in actual 

manufacturing sites, so it is necessary to use a more 

effective algorithm. 

 This paper proposes a bearing fault diagnosis 

method for siamese networks based on Few shot 

learning. We compare accuracy and parameters 

according to the number of blocks in the 

WDCNN model. The method was experimented 

on Case Western Reserve University (CWRU) 

data, [18]. The composition of this paper is as 

follows. Section 2 describes CWRU-bearing data, 

a few shot learning, and the siamese networks. 

Section 3 describes the few-shot learning-based 

bearing fault detection. Section 4 of the relevant 

study describes the experimental procedures and 

results. Finally, Section 5 presents the conclusion 

and future research. 
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2 Related Work 
 

2.1 Few-Shot Learning 
Few-shot learning was first addressed in the 1980s, 

[4]. Recently, Few-shot learning has made great 

progress in solving the data shortage problem, [5]. 

Few samples have been used for classification or 

regression. Few-shot learning can categorize data 

well with literally few samples. Few-shot learning 

differs from conventional supervised learning 

methods and does not generalize the training set to a 

test set. It is divided into training, support and query 

sets in all data. We train the model in the training 

set, and the goal of training is to learn the 

similarities and differences between objects. 

 

2.2 Siamese Network 
Siamese networks were first introduced in the early 

1990s by Bromley and LeCun to solve signature 

verification as an image-matching problem, [4]. Fig 

1 shows the Siamese network structure. Unlike 

ordinary CNN, they consist of two CNN models but 

the two models have the same structure, [6], [19].  

 

Fig. 1: Siamese network 

 

That is why it is also called the twin network. 

Siamese networks usually use CNN models, but 

other models can be used as well. 

A Siamese network takes two images as input and 

receives two images. The neural network outputs 

two feature vectors extracted from two input images 

and obtains a difference result vector between the 

two feature vectors. Multiple dense layers are used 

to process the resulting difference between vectors, 

and finally, a number between scalar 0 and 1 is 

obtained by applying a sigmoid activation function. 

The output is close to 1 if the two images are of the 

same class, and close to 0 if they are of different 

classes. A network that vectorizes and returns the 

similarity between two vectors (similarity in [0,1]). 

The method to learn pairwise similarity is to train 

with positive and negative samples using a training 

set and randomly sample images from the training 

samples. If the two samples are the same, it is a 

positive sample, and if the two samples are different, 

it is a negative sample, [2], [7], [8], [9]. For example, 

there are the Husky, Elephant, Tiger, Parrot, Tea 

Class, and Tiger classes. First, select one sample 

from the tiger class and then select another type of 

tiger sample from the same class. Both samples are 

of the same class and are marked as 1. Conversely, 

other classes can also be selected. First, select one 

from the tiger class, then another sample from the 

other class. The two samples are of different classes, 

and if they are of different types, 0 is displayed. 

 

2.3 Fault Detection 
Fig 2 shows the bearing components. The basic 

components consist of an outer ring, an inner ring, a 

ball, and a cage (or retainer). A bearing is the basic 

element of the machine that supports the rotating 

shaft inside the machine and aids in the rotation of 

objects by reducing friction. 

 

 
Fig. 2: Components of rolling bearing 

 

As the most essential component of rotary 

mechanical equipment, the condition of the bearing 

has a significant impact on the entire facility. 

Bearing defects are caused by internal microcracks 

and surface damage due to the accumulation of 

microcracks. Fig 3 shows the bearing crack. Then,  

 

Fig. 3: Bearing crack 

 

due to the lack of a lubricant, contact between 

bearing surfaces and abnormally excessive external 

force is applied to the bearing. Defects in bearings 

mainly appear in the inner diameter, outer diameter 

or ball, [10]. The bearing defects are caused by 

complex working conditions and long-term 

operation, resulting in microcracks inside the 

bearing and then internal microcracks accumulate, 

gradually starting with surface breakage. It is 

possible to detect the initial defect of a bearing by 

grasping the accident condition of the bearing from 

its vibration signal of the bearing, [1], [3]. 
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3 Few Shot Learning based Bearing 

Fault Detection 
It is a Siamese network few-shot learning 

classification method based on our proposed 

WDCNN model. Fig 4 consists of three stages with 

the system structure presented in the paper. The data 

preparation stage (Top), the Few-shot-learning 

training & test (Middle), and the last is a siamese 

network structure based on the WDCNN model 

(Bottom).  

Fig 4 shows the system structure. The first step is 

data preparation. To verify the performance, we 

selected 12k drive end-bearing fault data from the 

Case Western Reserve University (CWRU) bearing 

datasets as the experiment data. In the experiment, 

each sample is extracted from two vibration signals. 

Half of the vibration signal is used to generate the 

training sample and the other half is used to 

generate the test sample. Training samples were 

generated with a window size of 2048 points and 80 

shift steps. The test samples are also created without 

overlap with the same window size. 

The second is the training and testing phase. 

During training, the model is trained with a set of 

sample pairs of the same or different categories. The 

input is a sample pair with the same or different 

classes. The WDCNN model uses the two vibration 

signals prepared above as inputs. Each neural 

network outputs. 

 

 
Fig. 4: System structure 

 

Each neural network outputs two feature vectors 

extracted from two input images. After the output, 

the difference (distance) between the two feature 

vectors was obtained. After that, a dense layer was 

used to process differences between vectors. A 

number is obtained between 0 and 1 by applying the 

sigmoid activation function. Two similarities are 

measured and the output is that if the two images are 

of the same class, the output is close to 1 and the 

other class is close to 0. The difference between the 

target value and the predicted scalar is measured 

using the loss function. 

 The test is carried out using several one-shot k-way 

tests. In the N-shot K-way test, the model is 

provided with a support set of K different classes 

with N samples each. Determine which support set 

class the test sample belongs to. In this paper, since 

we proceeded with 5 Shot, the one-shot K-way test 

is repeated 5 times each time the support set is 

randomly selected from the training data. After five 

trials, five probability factors (P1, P2, P3, P4, P5) 

are calculated, and then the sum is calculated to 

obtain the largest value, [2]. The third is the 

structure of WDCNN according to the number of 

blocks in the Siamese network. 1 Block consists of a 

convolutional layer and a pooling layer. Each model 

consists of 6, 5, 4 or 3 blocks. Compare the 

accuracy of each model and the number of 

parameters. 

 Table 1 shows the structure of the few-shot learning 

model based on WDCNN 

 

Table 1. Structure of few-shot learning model based 

on WDCNN 

No Layer Type 
Kernel 

Size/Stride 

Kernel 

Number 

Output 
Size 

(width * Depth) 

padding 

 
1 

 
Convolution1 

 
64*1/16*1 

 
16 

 
128*16 

 
same 

 
2 

 
Pooling1 

 
2*1/2*1 

 
16 

 
64*16 

 
valid 

 
3 

 
Convolution2 

 
3*1/1*1 

 
32 

 
64*32 

 
same 

 
4 

 
Pooling2 

 
2*1/2*1 

 
32 

 
32*32 

 
valid 

 
5 

 
Convolution3 

 
3*1/1*1 

 
64 

 
32*64 

 
same 

 
6 

 
Pooling3 

 
2*1/2*1 

 
64 

 
16*64 

 
valid 

 
7 

 
Convolution4 

 
3*1/1*1 

 
64 

 
16*64 

 
same 

 
8 

 
Pooling4 

 
2*1/2*1 

 
64 

 
16*64 

 
valid 

 
9 

 
Convolution5 

 
3*1/1*1 

 
64 

 
6*64 

 
valid 

 
10 

 
Pooling5 

 
2*1/2*1 

 
64 

 
3*64 

 
valid 

 
11 

 
Fully-connected 

 
100 

 
1 

 
100*1 

 

 

It consists of 5 convolutional layers and a pooling 

layer, initially setting the kernel size to 64. One 

block means the sum of one convolution layer and 

one pooling layer, and the configuration of one 

block follows the size, stride, and padding of the 

kernel of con 5 in Table 1 and the size, stride, and 

padding of the kernel of pooling 5.  

Block 3, 4, 5, 6 models have reduced number of 

blocks or added 1 block from the 5 blocks in the 

base model. When reducing the number of blocks, 

reduce sequentially from Conv5+Pooling5. For 

example, in the case of block4, it means 

conv4+pooling4 by reducing Conv5+Pooling5 in 

Table 1. When adding block counts use the same 
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kernel size, number and stride for conv5+pooling5. 

For example, for block6, conv6 +pooling6 is added 

after con5+pooling5. 

 

 

4 Experiment and Results 
 

4.1 Experiment Environments 
Table 2 shows the experimental environment. The 

hardware used in this study consisted of an Intel 

Core i7- 8700k processor and GeForce GTX 3080ti. 

The software uses Windows, Tensorflow 2.4 and 

Python 3.6. 

 

Table 2. System specification 
 

Hardware Environment 
 

 
Software Environment 

CPU: Intel Core i7-8700K CPU@ 3.70GHZ 
Six-core 

window, Tensorflow 
2.4 

 
GPU: NVIDIA Geforce GTX 3080ti 

 

 
Python 3.6 

 

In this paper, the CWRU dataset was used. The 

CWRU dataset is data collected for normal bearings, 

Drive end, and Fan end defects. Drive end was 

collected in samples measured 12k per second (12k 

– 12000 vibrations per second) and 48k per second 

(48k – 48000 vibrations per second) and Fan end in 

samples measured 12k per second (12k – 12000 

vibrations per second). There are three types of 

bearing fault: Inner race, Outer race, and Ball and an 

independent data set exist according to the size of 

each bearing fault. Each fault size consists of 0.007 

inches, 0.014 inches and 0.021 inches, respectively. 

For each failure size, 0-3 hp was configured. Outer 

 Raceway Faults measured vibration for fault 

conditions at 3 o’clock, 6 o’clock and 12 o’clock 

positions, [12], [15]. 

 

 
Fig. 5: Bearing simulator of CWRU 

 

Fig 5 shows the bearing simulator of CWRU. The 

CWRU simulator is composed of the dynamometer,  

Electric motor, Drive end bearing, Fan end bearing 

and Torque transducer and encoder. 

Table 3 shows the description of rolling bearing 

datasets. There are 10 types of fault labels, as shown 

in Table 3. Dataset A combined 660 tests of Load 1, 

2 and 3 training and 25 tests to create 1980 training 

sets and 75 test sets. 

 In this experiment, the test set of dataset A is set as 

this and 60, 90, 120 and 200 samples are randomly 

sampled from the training samples of dataset A, 

respectively. 

 

Table 3. Description of rolling bearing datasets 
Fault 

Location 
None Ball Inner Race Outer Race Load 

Fault 
Diameter 

(inch) 

 

0 
 

0.007 
 

0.014 
 

0.021 
 

0.007 
 

0.014 
 

0.021 
 

0.007 
 

0.014 
 

0.021 
 

 
Fault 

Labels 
1 2 3 4 5 6 7 8 9 10  

 

 

Dataset 

A 

 

Train 
 

1980 
 

1980 
 

1980 
 

1980 
 

1980 
 

1980 
 

1980 
 

1980 
 

1980 
 

 
1,2,3 

 
Test 

 
75 

 
75 

 
75 

 
75 

 
75 

 
75 

 
75 

 
75 

 
75 

 

4.2 Evaluation Metric 
Accuracy is the most intuitive indicator. The 

problem, however, is that unbalanced data labels 

can skew performance. The equation for this 

parameter is: 

 

             Accuracy =  
|𝑇𝑃|+|𝑇𝑁|

|𝑇𝑃|+|𝐹𝑃|+|𝐹𝑁|+|𝑇𝑁|
           (1) 

 

The recall is the ratio of a class to what the model 

predicts as true among those that are actually true. 

The recall can be expressed by the following 

equation: 

 

             Recall(sensitivity)  =  
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑁|
          (2) 

 

Precision is the proportion of what the model 

classifies as true that is actually true. Precision can 

be expressed by the following equation: 

 

                 Precision =  
|𝑇𝑃|

|𝑇𝑃|+|𝐹𝑃|
                        (3) 

 

The f1-score is the harmonic average of precision 

and recall. When the data labels are unbalanced, the 

performance of the model can be accurately 

evaluated. The f1 score can be expressed in the 

following equation: 

 

F1 − score = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
           (4) 

 

4.3 Results 
In this paper, we proceeded with 60, 90, 120, and 

200 samples from the training sample of dataset A, 

respectively and each experiment was set to a batch 

size of 32. All experiments used the most important 
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accuracies mentioned in the evaluation index. To 

cover compensate for the shortcomings of accuracy, 

an f-1 score was used. The experimental results are 

shown in Fig 5 and Fig 6 show the change in 

accuracy according to the number of blocks and Fig 

5 shows the change in the parameters according to 

the number of blocks. 

Fig 6 shows a graph of the change in accuracy 

with the number of blocks. The graph in Fig 6 

shows the number of blocks 3, 4, 5 and 6 in the 

WDCNN model, respectively and the x-axis shows 

the number of samples 60, 90, 120 and 200. The 

blue graph represents block 3, the orange graph 

represents block 4, the gray graph represents block 5 

and finally, the yellow graph represents block 6. It 

can be seen that the accuracy of Block 5 is high in 

most of the samples. However, it can be seen that 

the accuracy of block 4 is higher in samples 120 and 

200.  

 

 
Fig. 6: Accuracy changes according to the 

number of blocks 

 

Fig 7 shows the Parameter changes according to 

the number of blocks graph. 

 

 

 

 

 

 

 

 

Fig. 7: Parameter changes according to the 

number of blocks 

You can see that it decreases rapidly as you go 

through Block 3 and Block 4, and there is almost 

no change in Block 5 and Block 6.  In Sample 

120, block 4 is about 1% higher than block 5, but 

block 5 is more efficient because the number of 

block 5 parameters is 20,000 less than the number 

of block 4 parameters. 

 

Table 4. Block accuracy & F1-score 

Sample60 Block3 Block4 Block5 Block6 

Accuracy 59.01 66.75 82.80 81.02 

F1-score 58.28 68.72 78.90 79.58 

 

Table 5. Block accuracy & F1-score 

Sample90 Block3 Block4 Block5 Block6 

Accuracy 74.47 83.22 91.37 85.42 

F1-score 75.73 87.39 91.50 85.96 

 

Table 6. Block accuracy & F1-score 

Sample120 Block3 Block4 Block5 Block6 

Accuracy 78.46 94.03 92.66 89.28 

F1-score 78.10 94.25 78.28 87.00 

 
Table 7. Block accuracy & F1-score 

Sample200 Block3 Block4 Block5 Block6 

Accuracy 86.16 94.63 94.32 93.69 

F1-score 85.97 94.43 90.83 88.87 

 
Tables 4, 5, 6, and 7 show the accuracy and f1-

score. Samples 60, 90, and 200 do not drop 

significantly in the F1-score relative to accuracy. 

However, unlike blocks 3, 4, and 6 on sample 120, 

block 5 performs poorly due to its low f1 score 

compared to its accuracy. 

 

 
(a) Sample 60 
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(b) Sample 90 

 

 
 

(c) Sample 120 

 

 
 

(d) Sample 200 

Fig. 8: Cofusion Matrix of block 6 

 

The confusion matrix plots the sample's predicted 

results on the horizontal axis and the actual labels of 

the samples on the vertical axis. Fig 8(a), (b), (c), (d) 

shows the confusion matrix results for block 6. It is 

difficult to diagnose in sample 120 compared to 

other samples. In particular, it can be seen that it is 

difficult to diagnose in other categories except 

category 4. 

 

 

5 Conclusion 
In this paper, we propose a siamese network 

structure for classifying bearing defects through 

Few shot learning on the CWRU data set and see the 

changes in accuracy and parameters according to the 

number of blocks in WDCNN. 

In future studies, in addition to the CWRU dataset, 

it can be considered in future research as a dataset 

with noise added to a dataset in the actual field. 

Additionally, we plan to conduct research focusing 

on improving bearing fault diagnosis accuracy while 

reducing the number of parameters through other 

models other than WDCNN. 
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